The control of flight force by a flapping wing: lift and drag production.
نویسندگان
چکیده
We used a dynamically scaled mechanical model of the fruit fly Drosophila melanogaster to study how changes in wing kinematics influence the production of unsteady aerodynamic forces in insect flight. We examined 191 separate sets of kinematic patterns that differed with respect to stroke amplitude, angle of attack, flip timing, flip duration and the shape and magnitude of stroke deviation. Instantaneous aerodynamic forces were measured using a two-dimensional force sensor mounted at the base of the wing. The influence of unsteady rotational effects was assessed by comparing the time course of measured forces with that of corresponding translational quasi-steady estimates. For each pattern, we also calculated mean stroke-averaged values of the force coefficients and an estimate of profile power. The results of this analysis may be divided into four main points. (i) For a short, symmetrical wing flip, mean lift was optimized by a stroke amplitude of 180 degrees and an angle of attack of 50 degrees. At all stroke amplitudes, mean drag increased monotonically with increasing angle of attack. Translational quasi-steady predictions better matched the measured values at high stroke amplitude than at low stroke amplitude. This discrepancy was due to the increasing importance of rotational mechanisms in kinematic patterns with low stroke amplitude. (ii) For a 180 degrees stroke amplitude and a 45 degrees angle of attack, lift was maximized by short-duration flips occurring just slightly in advance of stroke reversal. Symmetrical rotations produced similarly high performance. Wing rotation that occurred after stroke reversal, however, produced very low mean lift. (iii) The production of aerodynamic forces was sensitive to changes in the magnitude of the wing's deviation from the mean stroke plane (stroke deviation) as well as to the actual shape of the wing tip trajectory. However, in all examples, stroke deviation lowered aerodynamic performance relative to the no deviation case. This attenuation was due, in part, to a trade-off between lift and a radially directed component of total aerodynamic force. Thus, while we found no evidence that stroke deviation can augment lift, it nevertheless may be used to modulate forces on the two wings. Thus, insects might use such changes in wing kinematics during steering maneuvers to generate appropriate force moments. (iv) While quasi-steady estimates failed to capture the time course of measured lift for nearly all kinematic patterns, they did predict with reasonable accuracy stroke-averaged values for the mean lift coefficient. However, quasi-steady estimates grossly underestimated the magnitude of the mean drag coefficient under all conditions. This discrepancy was due to the contribution of rotational effects that steady-state estimates do not capture. This result suggests that many prior estimates of mechanical power based on wing kinematics may have been grossly underestimated.
منابع مشابه
Efficiency of Lift Production in Flapping and Gliding Flight of Swifts
Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing...
متن کاملEffect of wing inertia on hovering performance of flexible flapping wings
Insect wings in flight typically deform under the combined aerodynamic force and wing inertia; whichever is dominant depends on the mass ratio defined as m = sh / fc , where sh is the surface density of the wing, f is the density of the air, and c is the characteristic length of the wing. To study the differences that the wing inertia makes in the aerodynamic performance of the deformable wing,...
متن کاملComparison of Power Requirements: Flapping vs. Fixed Wing Vehicles
The power required by flapping and fixed wing vehicles in level flight is determined and compared. Based on a new modelling approach, the effects of flapping on the induced drag in flapping wing vehicles are mathematically described. It is shown that flapping causes a significant increase in the induced drag when compared with a non-flapping, fixed wing vehicle. There are two effects for that i...
متن کاملThe influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces
The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few q...
متن کاملA Passive Dynamic Approach for Flapping-wing Micro-aerial Vehicle Control
This article outlines a new control approach for flapping-wing micro-aerial vehicles (MAVs), inspired both by biological systems and by the need for lightweight actuation and control solutions. In our approach, the aerodynamic forces required for agile motions are achieved indirectly, by modifying passive impedance properties that couple motion of the power stroke to the angle of attack (AoA) o...
متن کاملAn aeroelastic instability provides a possible basis for the transition from gliding to flapping flight.
The morphology, kinematics and stiffness properties of lifting surfaces play a key role in the aerodynamic performance of vertebrate flight. These surfaces, as a result of their flexible nature, may move both actively, owing to muscle contraction, and passively, in reaction to fluid forces. However, the nature and implications of this fluid-structure interaction are not well understood. Here, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 204 Pt 15 شماره
صفحات -
تاریخ انتشار 2001